81 research outputs found

    Universal Voting Protocol Tweaks to Make Manipulation Hard

    Full text link
    Voting is a general method for preference aggregation in multiagent settings, but seminal results have shown that all (nondictatorial) voting protocols are manipulable. One could try to avoid manipulation by using voting protocols where determining a beneficial manipulation is hard computationally. A number of recent papers study the complexity of manipulating existing protocols. This paper is the first work to take the next step of designing new protocols that are especially hard to manipulate. Rather than designing these new protocols from scratch, we instead show how to tweak existing protocols to make manipulation hard, while leaving much of the original nature of the protocol intact. The tweak studied consists of adding one elimination preround to the election. Surprisingly, this extremely simple and universal tweak makes typical protocols hard to manipulate! The protocols become NP-hard, #P-hard, or PSPACE-hard to manipulate, depending on whether the schedule of the preround is determined before the votes are collected, after the votes are collected, or the scheduling and the vote collecting are interleaved, respectively. We prove general sufficient conditions on the protocols for this tweak to introduce the hardness, and show that the most common voting protocols satisfy those conditions. These are the first results in voting settings where manipulation is in a higher complexity class than NP (presuming PSPACE \neq NP)

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Contract types for satisficing task allocation: I Theoretical results

    No full text
    We analyze task reallocation where individually rational (IR) agents (re)contract tasks among themselves based on marginal costs. A task allocation graph is introduced as a tool for analyzing contract types. Traditional single task contracts always have a short path (sequence of contracts) to the optimal task allocation but an IR path may not exist, or it may not be short. We analyze an algorithm for finding the shortest IR path. Next we introduce cluster contracts, swaps, and multiagent contracts. Each of the four contract types avoids some local optima that the others do not. Even if the protocol is equipped with all four types, local optima exist. To attack this problem, we introduce OCSMcontracts which combine the ideas behind the four earlier types into an atomic contract type. If the protocol is equipped with OCSM-contracts, any sequence of IR contracts leads to the optimal task allocation in a finite number of steps: an oracle---or speculation---is not needed for choosing the pa..

    Distributed Rational Decision Making

    No full text
    corecore